

Mind the Gap: Learning the Surface Forms of Movement

Laurel Perkins, Naomi H. Feldman, and Jeffrey Lidz University of Maryland, College Park

How do Learners Identify Movement Dependencies?

Learners need to identify both local and non-local syntactic dependencies:

- (1) You brought some toys.
- (2) a. Wh-question: What did you bring ___?
 - b. Relative clause: I like the toys that you brought ___.
 - c. Passive: Those toys were brought ___.

▶ Different types of argument movement take different forms across languages. How do learners identify these forms in their target language?

[[what] did [you [bring __]]

Empirical Background

Wh-Dependency Development in Infancy

15- to 16-month-olds:

- Recognize local argument relations, sensitive to verb transitivity [1, 2, 3]
- May use verb knowledge to cheat at interpreting wh-dependencies [4, 5]

Fig. 1 Listening time preferences for sentences without post-verbal objects

Tot contollect Without post Verbal object	
*A dog! The cat	Which dog should the
should bump.	cat bump?
A dog! The cat	*Which dog should
should bump him.	the cat bump him?

Perkins (2019)

18- to 20-month-olds:

- Know that a moved wh-phrase is an argument in a *wh*-question [3]
- Reliably produce and comprehend whquestions [4, 6, 7]

► Infants represent argument movement after learning verb argument structure

Hypothesis: Gap-Driven Learning

Learners may use verb argument structure knowledge to identify different types of movement dependencies [3, 4, 5, 7]:

- Notice when expected argument of a verb is missing in its canonical position (gap)
- Identify what forms co-occur with unexpectedly missing arguments
- Infer what underlying dependencies are responsible for those forms
- Current question: Is this hypothesis computationally feasible, given the data that children have to learn from?

Current Model

Syntactically-Informed Distributional Analysis

Learners might combine verb argument structure knowledge with distributional learning to identify which forms characterize movement in English

Joint Inference:

- Categorize sentences according to their surface forms
- Use verb transitivity knowledge to infer which sentence 'categories' contain object gaps

Fig. 4 Observed Morphosyntactic Sentence Features (F)

Subject	subject is overt; sentence-initial; preceded by an auxiliary; preceded by another noun
Verb	verb is first verb in sentence; followed by a preposition or particle; has -ed, -en, -ing, -s, or irregular morphology
Tense, Auxiliaries	verb is preceded by to, be, have, get, or do
Other	question; unknown function word* in sentence-initial, medial, or final position

^{*}Includes wh-words, complementizers, focus particles, quantifiers, conjunctions

Data

18,503 sentences of child-directed speech from the CHILDES Treebank [10]

- 50 frequent transitive, intransitive, and alternating verbs learned by prior model [8, 9]
- Coded for presence of overt direct object and other morphosyntactic features
- For evaluation, also coded for underlying clause type (basic, wh-question, passive, etc.)

Results

Accuracy on Identifying Movement

Model inferred 35 total sentence categories, 15 containing argument gaps

- High overall cluster purity (0.76) compared to actual underlying clause types
- Above-chance accuracy on identifying sentences with movement, higher accuracy on object movement
- Similar accuracy across verb classes
- ► Joint inference enabled learner to identify movement even for verbs that do not require objects

Features of Argument-Gap Categories

Distinctive features of argument-gap categories

included forms that characterize movement

in English, but also included irrelevant forms

Fig. 5 Overall Accuracy: All Movement

Precision	Recall	F1 Score
0.51	0.62	0.56
0.25	0.37	0.30
0.15	1.00	0.27
0.15	0.50	0.25
	0.51 0.25 0.15	0.51 0.62 0.25 0.37 0.15 1.00

No-Category Baseline:

- Identified object gaps using verb transitivity their surface features
- ► Helpful to generalize across sentences with similar forms

SUBJ V

what are [you [bringing 遭]] ?

SUBJ V

what are [you [bringing __]]

OBJ

Fig. 6 Accuracy on Object Movement: % Correctly Identified

Verb Class	Transitive	Intransitive	Alternating	Total
Our Model	0.81	0.93	0.86	0.85
No-Category	0.76	0.36	0.50	0.55

knowledge, without categorizing sentences by

Distributional Baseline:

- Categorized sentences by their surface features, without using verb transitivity knowledge
- All categories would be identified as having gaps
- ► Important for verb knowledge to guide distributional learning

Fig. 7 Features with Significantly Higher Odds Ratios in Two Sample Argument-Gap Categories

Clause Type	Distinctive Features
Wh-question	subject is overt, preceded by an auxiliary; verb is first in sentence, has -ing, preceded by be; sentence-initial function word; question
Passive	subject is overt, sentence-initial; verb is first in sentence, has -en, preceded by be or have

Prior Model: Acquiring Argument Structure

It is computationally possible for learners to identify verb argument structure even before they can recognize moved arguments [8, 9]

 Input filtering: assume data has both signal and noise, and learn to filter noise

rig. 2 Proportions of verbs categorized correctly			
Transitive	Intransitive	Alternating	Total
0.67	0.83	0.63	0.66

Fig. 2 Proportions of verbs categorized correctly You brought some toys. Perkins, Feldman, & Lidz (2017; under revision)

Discussion

It is possible for a learner to perform distributional learning in order to identify forms that characterize movement dependencies in English

- Doing so incrementally requires prior verb argument structure knowledge
- ► Provides a computational account for the observed developmental trajectory of argument structure and argument movement acquisition

Distributional learning only goes so far: model identified forms that characterize movement, but also irrelevant forms

► How do learners infer the different dependencies that are responsible?

Acknowledgments

Big thanks to research assistants Lilianna Righter, Jordan Schneider, Alexander Shushunov, and John-Paul Teti, as well as Mina Hirzel, Norbert Hornstein, Tyler Knowlton, Alexander Wiliams, Tara Mease, and the Project on Children's Language Learning. Funding: NSF BCS-1827709, BCS-1551629, DGE-1449815.

References: [1] Lidz, White & Baier (2017). The role of incremental parsing in syntactically conditioned word learning. Cog Psych. [2] Jin & Fisher (2014). Early evidence for syntactic bootstrapping. Proc BUCLD 38. [3] Perkins (2019). How grammars grow. Dissertation. [4] Gagliardi, Mease & Lidz (2016). Discontinuous development in the acquisition of filler-gap dependencies. Lang Acq. [5] Perkins & Lidz (2019). Filler-gap dependency comprehension at 15 months. Lang Acq. [6] Seidl & Jusczyk (2003). Early Understanding of Subject and Object Wh-Questions. *Infancy.* [7] Stromswold (1995). The acquisition of subject and object wh-questions. Lang Acq. [8] Perkins, Feldman, & Lidz (2017). Learning an input filter for argument structure acquisition. Proc CMCL 7. [9] Perkins, Feldman & Lidz (under revision). The power of ignoring. [11] Pearl & Sprouse (2013). Syntactic islands and learning biases. Lang Acq. Contact: Laurel Perkins, perkinsl@umd.edu