Learning from Noisy Data

Learners use developing grammatical knowledge to parse \& learn from their data - How do they generalize accurately from immature representations of input?

Case Study: Word Order
Infants acquire their language's basic word order from input containing a mixture of canonical and non-canonical sentence types [1-4]
 speech are potentially misleading

How do children avoid being misled by "noise" from non-canonical clause types? [4-8]

Fig. 1 Most frequent string types in Eve and Lyon
CHILDES corpora $9-101$. NPs S corpora $[9-10]$ NPs and Vs imperfectly
identified from functional cues [11-13]

Proposal: Input Filtering

wo Possible Solutions

Regularization: explicit numerical bias against encoding full variability of data prefer hypotheses that are heavily skewed [14-16]
Filtering: expect that data are a noisy realization of a deterministic underlying system, and learn to separate signal from noise [8]

- Finding: filtering works better in this learning domain

Our Model
Observes strings of imperfectly-identified NPs and Vs, considers 4-way choice of canonical word order
Grammar deterministically places subject before/after VP, object before/after V Some parts of strings are generated by "noise" processes: unknown grammatical phenomena that appear to insert, delete, or swap arguments

Bayesian joint inference to select a canonical grammar + filter parameters
What do the data from the canonical grammar look like?
What do the data from noise look like?
What is the right division into signal vs. noise?

What does Filtering Look Like?
From strings of NPs and Vs, make a noisy guess about underlying tree structure
 of time how much noise there is, or what its properties are

Toy Example
How might these data have arisen
partially from a word order grammar distribution and partially from the noise distribution?

Two solutions (of many):

NP VNP	14	
NP V	26	
VNP	2	SVO? OVS?
V	1	SOV? VOS?
NP NP V	1	
V NP NP	1	

Costly to analyze too much of the data as noise: too many degrees of freedom
Simpler solution: attribute skewed data to restrictive word order grammar whenever possible

Results: Child-Directed Speech

Simulations on 50 -sentence datasets of NP-V strings, sampled from corpora of child-directed English and French (Fig. 1)

Learner successfully assigns SVO highes
Learner successfuly assigns SVO highe
posterior probability in both languages
Even though data cannot be produced by any single word order grammar, without noise

- Filter works, and filter can be learned
from distributions in the data

Model Comparisons

"Fully-Flexible" Learner

No 4-way choice of a canonical word order grammar: all rules possible with some probability [18]
Collapses distinction in our model between rules
for canonical and non-canonical structures
Learning canonical word order means identifying that some rules have probabilities near zero
Two variants: with and without an explicit bias to regularize (push probabilities towards zero/one) [15-17]

- Learner without bias to regularize infers distributions that mirror its noisy data Learner with bias to regularize gives high probability to non-target word orders

- Useful to have a hypothesis space

 with restrictive grammatical options

Fig. 3 Posterior distribution over subject and
object positions in trees, fully-flexible learner

A Data-Coverage Heuristic

Simpler alternative: select the grammar that covers the most data
E.g., core rules of SVO grammar generate 56% of English data, more than any other grammar
Comparison: version of our learner with an 8 -way choice among grammars

- 4 options from original model
that fix both subject and object position that fix both subject and object position
4 less restrictive options that only fix one argument position, and allow the other to vary

Fig. 4 Eigh-way hypothesis space. proporition dala

Our learner still successfully assigns SVO highest posterior probability in both languages, even though more flexible grammars cover more of the data

- Emergent preference for most restrictive hypothesis that fits the data

Discussion

We find that input filtering can in principle enable acquisition of basic word order from noisy data
From imperfectly-identified NP and V distributions alone, our model learns to separate evidence It does so without knowing ahead of time what noise looks like, or how much there is

Restrictive options in the learner's hypothesis space allow successful filtering
Each word order grammar allows only a certain combination of rules
Preference emerges to use these when possible, rather than analyzing everything as nois

- Provides a novel alternative to regularization in grammar learning

Grammar leads you to expect regularities in your data
Giltering allows you to find them

