Noise-tolerant learning as selection among deterministic grammatical hypotheses
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Learning from Noisy Data What does Filtering Look Like? Model Comparisons

From strings of NPs and Vs, make a noisy guess about underlying tree structure “Fully-Flexible” Learner

Learners use developing grammatical knowledge to parse & learn from their data
» How do they generalize accurately from immature representations of input?

No 4-way choice of a canonical word order grammar: all rules possible with some probability [18]
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